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I. INTRODUCTION
Over the years, various classical control

techniques have been analysed and compared to
keep a suspended payload regulated when the
vessel is undergoing dynamic vertical motion in the
ocean (Zinage and Somayajula (2020); Li et al.
(2019); Woodacre et al. (2018); Do and Pan (2008)).
However, not much research has looked at using

reinforcement learning (RL) control techniques,
which is one of the methods gaining popularity in
marine applications (Woo et al. (2019); Martinsen
and Lekkas (2018); Zhao and Roh (2019)).
Human error accounts for roughly 80%–85% of

all marine-related accidents (Baker and McCafferty,
2005). These incidents put human lives in danger
and also have a potential to cause damage to the
environment. In addition, the owners of the ships
involved in such incidents also face significant
financial losses. The recent Ever Given incident in
the Suez Canal, 2021 is just one such example,

where the vessel could not maintain its path under
the influence of strong winds. With the recent
advancements in the artificial intelligence (AI) it is
now possible to explore automation solutions for
the maritime industry to reduce the occurrence of
such incidents. The progress in AI technology,
particularly reinforcement learning (RL), now
offers a new solution to address the demands of
ship path following and trajectory tracking.
With the increase in the number of ocean

explorations and a huge demand for various marine
resources, heave compensation has become a vital
part of various maritime operations. In heave
compensation, the primary objective is to decouple
the motion of a payload connected to the ship from
the ship’s vertical (heave) motion. Heave
compensation methods can be broadly classified
into two main categories: passive heave
compensation (PHC) and active heave
compensation (AHC). The PHC is an open loop
system that is designed to partially decouple the
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payload from the vessel. The compensation
performance for PHC is generally observed to be
less than 80 % (Hatleskog and Dunnigan (2007)).
AHC relies on closed loop control system
architecture and provides the payload displacement
as a continuous feedback to the controller so that an
improved compensation performance is achieved.
In RL, agents are trained on a reward and penalty

system. The agent is rewarded for actions that allow
the attainment of a goal and penalized for actions
that have detrimental effects. Through experience,
the agent seeks the optimal policy that consistently
chooses actions leading to higher rewards and
avoids actions that lead to lower rewards. Such a
control approach falls under the class of data driven
controllers where no model of the system being
controlled is needed. Rather the system dynamics
and the appropriate control strategy is learned by
the agent as it tries to optimize its interaction with
the system.
Lately, model-free deep reinforcement learning

has made significant progress in solving a variety of
complex tasks. The first successful application of
this technique to learn the control policy was
through a deep Q-network (DQN) for playing Atari
games (Mnih et al. (2013); Silver et al. (2017)),
which integrates the Q learning and deep neural
network. However, DQN can only be used to solve
problems that have discrete action space. Since
manycontrol tasks in the real world have continuous
action space, several advanced reinforcement
learning algorithms aiming to solve continuous
control problems have also been developed
(Lillicrap et al. (2015); Mnih et al. (2016); Levine
et al. (2016)).
Traditional RL requires the storing of the action

choosing policy of the agent in the form of Q-tables.
Q-tables document the expected reward for a large
table of scenarios covering all possible
combinations of discrete states that the agent can be
in and the actions it can choose. This table is
updated at every time step when the agent moves to
a new state through a chosen action from previous
state. The advancement in the area of deep learning
has given rise to deep reinforcement learning (DRL)
that incorporate neural networks to store the policy
of the agent (Mnih et al., 2013). This replacement
of Q-tables by neural networks allows for a more

efficient storage of the policy and potential
application to more complex problems. While the
traditional RL based on Q-tables requires both state
space and action space to be discrete, with deep
reinforcement learning it is now possible to explore
solutions for scenarios where the state space and
action space may be discrete or continuous (Perera
et al., 2015).
In this paper, a deep deterministic policy gradient

(DDPG) (Lillicrap et al. (2015)) algorithm that is
based on an actor critic framework is used. This
method has an advantage over the DQN approach
that it can deal with a continuous action space.
Apart from that, this algorithm inherits
conventional approaches of RL such as actor-critic
(Sutton et al. (1999)), and policy gradient (Konda
and Tsitsiklis (2000)).

II. MODELING OF SHIP MOTION
In this paper, the KRISO container ship (KCS) is

chosen for calculating the dynamic motion in the
ocean. The Pierson Moskowitz (PM) wave
elevation spectrum corresponding to a significant
wave height HS and peak period Tp for a range of
frequencies is defined by
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An irregular wave elevation time history is
generated from the above spectrum. The wave
elevation is expressed as a sum of N sinusoidal
components as shown below
� � = �=1

� ��cos (��� + ∅�)� (2)

In this study, N is taken as 100001 to simulate a
10000s time history with a sampling time of 0.1s.
For a simulation of duration T seconds, the
frequency increment is given by Δω = 2π/T . At
each discrete frequency ωn = nΔω, the amplitude of
the nth wave component is given by

�� = 2�(��)∆� (3)
The phase ϕn of each wave component is sampled

from a uniform distribution between -π and π
(Somayajula (2017)). In order to avoid repeating of
the generated signal the frequencies are randomised
as shown below
(ωn)new = (ωn)old +�ΔωX (4)
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where X is a random variable following an
uniform distribution between −0.5 and 0.5.
The response amplitude operator (RAO) of the

KCS container ship is obtained for the heave, roll
and pitch modes using MDLHydroD developed by
Guha (2016) which is a frequency domain 3D panel
method based tool for analysis of wave structure
interaction.
Once the RAO is obtained, the response spectrum

of the roll, pitch and heave is calculated as shown
below

Sresponse (ω) =| H() |2 S(ω) (5)
where Sresponse is the response spectrum, H(ω)

is the RAO and S(ω) is the wave spectrum. Now the
input wave elevation time history is decomposed
into its frequency components by taking a fast
Fourier transform (FFT). The amplitude of the
response at a frequency ωk = (k − 1)Δω�is then
obtained by taking the product of RAO at that
frequency and the FFT of input wave elevation time
history at the same frequency. Finally, inverse fast
Fourier transform (IFFT) is used to convert these
three degrees of freedom back into time
domain.

Fig. 1: Ship with Installed Crane
A. Ship Dynamic Model
The KCS vessel is chosen for running numerical

simulations and evaluating the control algorithms
used in this research. The ship dynamics are
mathematically modeled with help of the MMG
(ManeuveringModeling Group) model (Yasukawa
and Yoshimura, 2015). The 3-DOF non-linear
equations of motion are used to solve for ship
maneuvering motions including surge, sway and
yaw motions. The equations of motion are solved
progressively at each time step as an initial value
problem using a Runge–Kutta implicit solver. The

commanded rudder angle �� is provided as an input
at each time step.
Two coordinate systems are defined to track the

vessel. The first system is a global coordinate
system (GCS) that is an earth fixed coordinate
frame with its �-axis pointed down. The second is a
body coordinate system (BCS) that is fixed to the
body and moves with the vessel. The origin of the
BCS is located at the intersection of midship,
centerline and waterline of the vessel with its �-axis
pointed towards the bow, �-axis pointed towards
starboard and �-axis pointed towards the keel of the
vessel. Both these coordinate frames are shown in
Fig. 2.

Fig. 2: Representation of ship kinematic variables

The heading angle � is defined as the angle
between the x-axes of the GCS and BCS frames.
The position and orientation of the vessel is denoted
by � = [�0, �0, �]� where �0 and �0 denote the
position of the origin of BCS expressed in GCS.
The velocity vector of the body in BCS is given by
� = [�, �, �]� where �, � and � represent surge,
sway and yaw velocities of the vessel respectively
and are expressed in BCS frame. The ship’s speed
is given by � = �2 + �2 . The drift angle (�) is
defined as the angle between the total velocity
vector and the longitudinal direction of ship and is
given by � = tan−1 (− �∕�). The kinematics of ship
motion are represented by (6)

http://www.ijeeejournal.org/
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�� = �(ψ) � (6)
where [�(�)] represents the rotation matrix given

by

�(ψ) =
cos (ψ) − sin ψ 0
���(ψ) ���(ψ) 0

0 0 1
(7)

Any vector in BCS when pre-multiplied by the
rotation matrix will result in the same vector
expressed in GCS.
In this study, the origin of the ship fixed

coordinate system is assumed to be at the
intersection of the waterline, centerline, and
midship. Assuming that the crane is placed at (xcrane,
ycrane) in the vessel’s body fixed coordinate system
with a slewing gear angle βs and the wave incident
angle of β, the net heave response time history of
the winch placed on board the KCS ship is
calculated in terms of the combined roll, heave, and
pitch motion caused due to the wave excitation. Fig.
1 shows a schematic diagram of the ship with a
crane installed on it. Assuming small amplitude
motions consistent with linear hydrodynamic theory,
the net heave motion time history is given by
zwinch = η3(β) + (ycrane + lcranesin(βs)) η4(β)
−( xcrane + lcranecos(βs)) η5(β) (8)
where η3(β), η4(β), and η5(β) are the heave, roll

and pitch time histories respectively, which depend
on the incident wave angle β. In this study, the
coordinate of the crane with respect to vessel’s
body frame is assumed to be at (−1.5 m, 2 m) with a
slewing gear angle of 30 degrees and the horizontal
extent of the crane (lcrane) is assumed to be 3m. The
plot of a 100 second snip of the net heave motion
time history in 4 different sea states when the waves
are incident at an angle of 135 degrees are shown in
Fig. 3.
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Fig. 3. Net heave time history generated from a
PM spectra having (a) Hs = 1.5 m, Tp = 6 s (b) Hs
= 4 m, Tp = 9 s (c) Hs = 6 m, Tp = 12 s (d) Hs = 8.5
m, Tp = 14 s

III. REINFORCEMENT LEARNING
BASED CONTROLLER

In RL, the agent interacts with the environment
by taking actions and observing the state and the
reward without any knowledge of the dynamics of
the environment. The goal in RL algorithm is to
find the optimal policy π* that selects the optimal
control actions ut* as shown below
��∗ = �∗ �� = ��� ��� �� ��, �� (9)

that maximises the Q value, which is the expected
value of the total discounted reward when an action
ut is taken in state st. Mathematically, it can be
defined as
�� ��, �� = �� ��|��, �� (10)

where the total discounted reward Rt is given by
�� = �=0

∞ ����+�+1� (11)
Here, r is the reward obtained at each time step and
γ is the discount factor. The discount factor γ
determines how much the agent values the reward
at the current time step as compared to rewards
obtained in the future. The optimal policy π* is
found by using the previous history of the states
visited by the agent and the rewards collected by it
during its interaction with the environment. By this
the agent generates experience which is then used
to improve the policy. The action-value function

written in a recursive format (also known as the
Bellman equation) is given by
�� ��, �� = ���, ��+1~� � ��, �� +

����+1~� �
� ��+1, ��+1

(12)
where the state st+1 is observed from environment

ε due to an action ut selected from state st. It is
further assumed that the action ut+1 is also selected
according to the policy π. Since DDPG uses a
deterministic policy and the state transition is
deterministic under a selected action in this problem,
the above equation then becomes
�� ��, �� = � ��, �� + ��� ��+1, � ��+1 (13)

where μ represents the deterministic policy function.
DDPG adopts an actor-critic framework where both
the policy and action-value functions are learnt
using neural networks. The actor network takes in
the input the current state of the agent and provides
the action to be taken according to the policy as its
output. The critic network takes in the action and
the state as the inputs and provides the Q value as
the output. The goal of the critic network is to
minimise the mean square temporal difference (TD)
error:
� = 1

� �=1
� � ��, ��|�� − ��

2
� (14)

where �� represents the parameters of the critic
network, N is the sample batch size, and yi is the
temporal difference (TD) target given by
�� = � ��, �� + ��� ��+1, � ��+1 (15)
The TD error is defined as difference between the

evaluated Q value and the TD target yi. If yi is
calculated using the same network used by the critic,
it may be very hard to converge. So a target critic
�' �, �|��' and target actor �' �|��' is introduced.

The parameters ��' and ��' is updated using a soft
method given by

��' ← ��� + 1 − � ��'

��' ← ��� + 1 − � ��' (16)
where � ≪ 1. So, the TD target yi can be expressed
as
�� = � ��, �� + ��' ��+1, �' ��+1|��

' |��' (17)
The aim of the actor network is to maximise the

expected accumulated reward J whose gradient is
given by

http://www.ijeeejournal.org/
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∇��� ≈
1
� �=1

� ∇�� �, �|�� |��, �=�(��)∇��� �|�� |��� (18)
where si is sampled from the replay buffer D.
The RL agent is programmed using Keras with a

Tensorflow backend. The training has been
performed on Nvidia GeForce GTX 1060 16GB
GPU. The state space s ∈ S chosen for the
application of RL is defined as
� = ��, ���, �����ℎ, ������ℎ (19)

Algorithm 1: DDPG algorithm

1: Randomly initialise critic network � �, �|��

and actor � �|�� with weights �� and ��.
2: Set target parameters equal to main parameters
��' ← ��, ��' ← ��.

Fig. 4. DDPG Architecture

3: Empty replay buffer D
4: for episode = 1, M do
5: Initialise a random noise N for action

exploration
6: Receive initial observation state s0
7: for t = 1, T do
8: Select action �� = ���� � ��|�� +

��, ����, �ℎ��ℎ
9: Execute action ut in the environment �
10: Observe new state st+1 and reward rt
11: Store (st, at, rt, st+1) in D
12: Sample a random minibatch of N transitions

(si, ai, ri, si+1) from D
13: Compute target

�� = �� + ��' ��+1, �' ��+1|��
' ��'

14: Update the critic network by minimising the
loss
� = 1

� �=1
� � ��, ��|�� − ��

2�
15: Update the actor policy by applying the

following gradient:
∇��� ≈

1
� �=1

� ∇�� �, �|�� |��, �=�(��)∇��� �|�� |���
16: Update the target networks with

��' ← ��� + 1 − � ��'

��' ← ��� + 1 − � ��'

17: end for
18: end for

where zw is the length of the reeled rope and
zwinch is the net heave at the winch due to the
motion of the vessel in waves. The action space u
∈ A is defined as

� = �� (20)
where up is the control input provided to the winch
model.
Fig. 4 shows a schematic diagram of the structure
of the DDPG architecture used. The pseudo code of
the DDPG algorithm is shown above. The actor
network is composed of two fully connected layers
with 256 neurons each whereas the critic network is
composed of a fully connected layers with 64 and
32 neurons for inputs s and u respectively followed
by a fully connected layer of 512 neurons as shown
in Fig. 4. A rectified linear unit function is used as
the activation function for each neuron.

IV. SIMULATION RESULTS
The following four cases are analysed to

understand the advantages and limitations of using
RL based control over classical control.
5.1 Heave compensation with no disturbance and
no noise

http://www.ijeeejournal.org/
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Fig. 5. Uncompensated and compensated motion
time histories at the winch for rough sea state.

5.2 Heave compensation with an offset

Fig. 6. Ability of the controllers to track the offset

5.3 Heave compensation with disturbance but no
noise

Fig. 7. Spectrum of disturbance and PM spectra’s
for different sea states

Fig. 8. Spectrum of compensated motions in
moderate sea state

Fig. 9. Spectrum of compensated motions for low
noise in moderate sea state

http://www.ijeeejournal.org/
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Fig. 10. Spectrum of compensated motions for
high noise in moderate sea state

V. CONCLUSIONS
It can be seen that the RL based control is able to

demonstrate a better heave compensation
performance than the PD control for all the four sea
states. Fig. 5 shows the plot of the uncompensated
motion and the compensated motion time histories
in rough sea state. Fig. 6 shows the ability of the
both the controllers in tracking an offset for a
period of 200 secs for a wave incident angle of 135
degrees. Fig. 7 shows the plot of the spectrum for
the disturbance and the wave elevations in different
sea states. In this study, it is assumed that the
disturbance entered the system only through the
third state (i.e reeled rope velocity ˙ zw). Fig. 8
shows the power spectral density of the
compensated motions for both the controllers in the
presence and absence of disturbance. It can be
observed that both controllers are good at
disturbance rejection. Fig. 9 shows the power
spectral density of the noise and compensated
motions for both the strategies when a low noise is
included. From Fig. 9, it can be seen that in high
SNR case, the PD controller is able to perform
better in attenuating the noise at higher frequencies.
As per Fig. 8 and zoomed plot inside Fig. 10, the
PD controller is found to be more affected due to
the noise as compared to the RL based controller.
When it came to high noise attenuation the RL

based controller performed better than the PD
controller as shown in Fig. 10.
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